Course Type	Course Code	Name of the Course	L	Т	Р	Credits
DSC	NPEC103	Petroleum Engineering Thermodynamics and Transport Phenomena	3	0	0	3

3	Ę
	D
	XX
	I

APP

Course Objective

This course aims to equip students with a thorough understanding of thermodynamics and transport phenomena as applied to petroleum engineering.

Learning Outcomes

- By the end of the course, students will possess a foundational understanding of thermodynamics enabling them to elucidate phenomena associated with petroleum reservoir fluids and production operations.
- Students will be able to analyze and apply principles of momentum, heat, and mass transfer to solve engineering problems in various industries, including petroleum engineering, with a focus on optimizing processes for efficient energy resource utilization.

Unit No.	Topics to be Covered	Lecture Hours	Learning Outcome		
1	Basis Concepts of First Law and Second Law of Thermodynamics: Thermodynamic state and state functions; Enthalpy; Entropy; Free energy; P-V andT-S diagrams; Steady state and reversible process; Heat engines.	4	Students will become adept at defining thermodynamic states, applying energy concepts, interpreting diagrams, distinguishing processes, and grasping heat engine principles.		
2	Introduction to phase behavior and chemical reaction equilibria (flash calculations with k- values); and equation of state applications and modelling.	4	Students will learn phase behavior, chemical equilibrium, flash calculations, and equation of state applications.		
3	Thermodynamic Properties of Fluids: Property relations for homogeneous phases; Residual properties; Generalized property correlations for gases.	4	Will understand fluid property relations, residual properties, and correlations for homogeneous phases and gases.		
4	Thermodynamics of Flow Processes: Principles of conservation of mass and energy for flow systems; Analysis of expansion process: turbines; throttling; compression process: compressors and pumps.	4	Will grasp conservation principles for flow systems and analyze expansion and compression processes in detail.		
5	Solution Thermodynamics: Basic concepts of chemical potential and phase equilibria; Partial properties; Residual and excess Gibb's free energy.	4	Will understand chemical potential, phase equilibria, partial properties, and Gibbs free energy variations in solutions.		
6	Momentum transport: Introduction; Momentum Balances; Newton's Law of Viscosity; Vector and Tensor Notation; Equations of Continuity and Motion; Steady State and Unsteady State FlowProblems.	7	Will achieve proficiency in momentum transport principles, including viscosity laws, flow balances, and continuity equation analysis.		
7	Energy transport: Heat Conduction; Fourier's Law;Shell Energy Balances; Analogies; Equations of Energy; Heat Transfer Coefficients; Solution ofNon-Isothermal Problems.	7	Will grasp heat conduction, energy balances, transfer coefficients, and solve non-isothermal problems effectively.		
8	Mass transport: Ordinary Diffusion, Fick's Law; Shell Mass Balances; Stagnant Film; Mass	8	Will understand diffusion, mass balances, transfer coefficients,		

Transfer Coefficien	nts; Multicomponent		multicomponer	nt balances,	
Macroscopic Balances	; Basic concepts of		absorption,	adsorption,	and
Absorption and Adso	rption; Basic concepts of		distillation prin	ciples effectively.	
distillation.					
Total		42			

Text Books:

- Bejan, Adrian. Advanced engineering thermodynamics. John Wiley & Sons, 2016.
- J. M. Smith, Hendrick C. Van Ness, M. M. Abbott, Mark Swihart, B I Bhatt (2020) Introduction to Chemical Engineering Thermodynamics. McGraw Hill.
- Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (2007). *Transport Phenomena* (Revised Second ed.). John Wiley & Sons.
- Plawsky, Joel L. Transport phenomena fundamentals. CRC press, 2020.

Reference Books:

- Abbas Firoozabadi (1999). Thermodynamics of Hydrocarbon Reservoirs. McGraw Hill.
- Christie J. Geankoplis (1993). Transport Processes and Unit Operations. Prentice Hall Inc.